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Abstract— Controller tuning and parameter optimization are
crucial in system design to improve both the controller and
underlying system performance. Bayesian optimization has
been established as an efficient model-free method for controller
tuning and adaptation. Standard methods, however, are not
enough for high-precision systems to be robust with respect
to unknown input-dependent noise and stable under safety
constraints. In this work, we present a novel data-driven
approach, RAGoOSe, for safe controller tuning in the presence
of heteroscedastic noise, combining safe learning with risk-
averse Bayesian optimization. We demonstrate the method for
synthetic benchmark and compare its performance to estab-
lished BO-based tuning methods. We further evaluate RaGoose
performance on a real precision-motion system utilized in
semiconductor industry applications and compare it to the
built-in auto-tuning routine.

I. INTRODUCTION

High-precision, high-stakes systems operation often re-
quires risk-averse parameter selection, even if this results in a
trade-off with the best expected performance of the systems.
The standard approach in tuning the control parameters of
such systems assumes constant observation noise, and tuning
is often based on a model-based or rule-based procedure, thus
limiting the system’s performance. The goal of this work
is to demonstrate a novel flexible, risk-averse approach to
find optimal control parameters under input-dependent noise,
based only on observation of the system performance.

Optimizing performance indicators derived from system
data for tuning of control parameters has been explored
through various approaches, e.g., iterative feedforward tun-
ing [1], variable gain selection [2], data-driven feedforward
learning [3]. The performance criteria can be represented
by features in the data measured during system operation at
different values of the controller parameters [4]. Then, the
low-level controller parameters can be optimized to fulfill the
desired performance criteria. Bayesian optimization (BO) [5]
denotes a class of sample-efficient, black-box optimization
algorithms that have been used to address a wide range of
problems, see [6] for a review. BO has been successfully
demonstrated in controller tuning with custom unknown
objectives and constraints in the existing literature [7], [8].

An important aspect for practical applicability of BO is
safety. In this work, we follow the definition for safety
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from [9] as optimization under constraints, separate from the
objective. BO has been combined with heteroscedastic noise
for controller optimization [10] to find optimal hyperparame-
ters of a stochastic model predictive controller, however, the
safety aspect of the approach was not studied. Our approach
considers safety of the underlying system and combines
aspects of safe BO and risk-averse BO. This ensures that
there are no constraint violations during the optimization,
and enables the application of the approach to continuous
optimization, e.g., [11], [12] concerning controller parameter
adaptation for systems operating under changing conditions.

Contribution. In this work, we make the following con-
tributions: (1) we propose a Bayesian optimization algorithm
for safe policy search in the presence of heteroscedastic
noise. The noise affects the surrogate models used in the
data-driven constrained optimization procedure, which are
built using features from the underlying noisy data, and
the exploration-exploitation strategy. (2) We demonstrate the
approach for a benchmark problem with safety constraints
and compare the achieved performance to that achieved
without accounting for the noise based on [11], and that
achieved with another constrained BO approach [13]. (3)
We demonstrate the approach on a numerical simulation of
a high-precision motion system, and apply it in practice
to tune the controller on the real system (Fig. 3), used
in semiconductor manufacturing, in comparison with the
industry standard tuning approach, via the built-in auto-tuner
in the system.

II. RELATED WORK

BO for controller tuning. BO has been applied in the
tuning of various types of controllers for fast motion sys-
tems. BO-based tuning for enhanced performance has been
demonstrated for cascade controllers of linear axis drives,
where data-driven performance metrics have been used to
intentionally increase the traversal time and the tracking
accuracy while reducing vibrations [14]. In model predictive
control (MPC), instead of adapting the controller for the
worst-case scenarios, the prediction model can be selected
to provide the best closed-loop performance by tuning the
parameters in the MPC optimization objective for maximum
performance [15]-[17].

Safe BO. To ensure optimal control performance for time-
varying systems, controllers should adapt their parameters
over time, while avoiding unsafe, or unstable parameters. Es-
pecially in high-precision motion systems, even one iteration
with excessive vibrations is not allowed during operation.
Thus, learning the parameters of cascaded controllers with
safety and stability constraints is needed to ensure that
only safe parameters are explored [11], [12]. The SafeOpt



algorithm [18] achieves safety, but is inefficient due to its
exploration strategy [9]. This has been addressed in [19],
where the safe set is not actively expanded, which may
compromise optimality but works well for the considered
application. Another approach applied to controller tuning, is
to add a safety-related log-barrier in the cost, as demonstrated
in [20], to reduce constraint violations as compared to an im-
plementation based on BO with inequality constraints [13].
An efficient way enabling safe exploration is GoOSE (Goal
Oriented Safe Exploration) [21], ensuring that every input to
the system satisfies an unknown, but observable constraint.
For controller tuning, GoOSE unifies time-varying Gaussian
process bandit optimization [22] with multi-task Gaussian
processes [23], and with efficient safe set search based on
particle swarm optimization, enabling its application in the
adaptive tuning of motion systems [11].

Tuning in the presence of heteroscedastic noise.
Input-dependent noise and lack of repeatability are common
in robotic and motion systems. The main challenge is
that both the objective and noise are unknown. Taking
it into account in controller design leads to performance
improvement, as demonstrated in the MPC-based controller
design of robotic systems. For example, [10] and [24]
account for heteroscedastic noise via an additional flexible
parametric noise model. These approaches, however, utilize
a restrictive model of the noise variance.

Alternatively, [25] focus on the risk associated with
querying noisy points and proposing RAHBO (Risk-Averse
Heteroscedastic Bayesian Optimization), a flexible approach
enjoying theoretical convergence guarantees. In contrast
to the standard BO paradigm that optimizes the expected
value only and might fail in the risk-averse setting, RAHBO
trades the mean and input-dependent variance of the
objective, while learning both the objective and the noise
distribution on the fly. To this end, RAHBO extends the
concentration inequalities in the case of heteroscedastic
noise [26] to the setting of unknown noise following the
optimism-under-uncertainty principle [27].

III. PRELIMINARIES AND PROBLEM STATEMENT

This section introduces the optimization problem of inter-
est and related preliminaries.

Classical optimization objective. Consider a problem of
sequentially optimizing a fixed and unknown objective f :
X — R over the compact set of inputs X C R%:

min f(x). (1)

zeX

At every iteration ¢, for a chosen input z; € X, one observes
a noise-perturbed evaluation y; resulting into the dataset
Dy = {(z4,y:) }iey, with:

ye = flae) +e(ay), (2)

where &(x) is zero-mean noise, independent across different
time steps ¢. Note that if the standard noise independence as-
sumption does not hold, additional terms in the noise model
covariance need to be included for Gaussian noise models.
In the standard setup, the noise is assumed to be identically

distributed over the whole domain X, i.e., &; ~ N(0, p?).
This, however, might be restrictive in practice, leading to
sub-optimal solutions [25]. Here we present the generalized
version of the optimization with &, ~ N(0, p*(z;)), where
p%() denotes the heteroscedastic variance as a function of
its argument throughout the text, and later describe why it is
important.

Bayesian optimization employs two main ingredients:
probabilistic model (for uncertainty quantification) and ac-
quisition function (for sampling policy of the next inputs).

Probabilistic model. Gaussian processes (GPs) [28] pro-
vide a distribution over the space of functions commonly
used in non-parametric Bayesian regression. Posterior GP
mean and variance denoted by s;(-) and o(-), respectively,
are computed based on the previous measurements y;.; =
[y1,...,u:]" and a given kernel (-, ") :
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As long as the GP-based model of the objective f is
well-calibrated, we can use it to construct high-probability
confidence bounds for f [27]. In particular, as long as f
has a bounded norm in the reproducing kernel Hilbert space
(RKHS) associated with the covariance function s used in
the GP, f is bounded by lower and upper confidence bounds
Icb! (x) and uch! (z), respectively,
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where Btf > 0 is a parameter that ensures validity of the

confidence bounds [26].

Acquisition function acq; X — R expresses the
informativeness of an input = about the location of objective
optimum, given the probabilistic model of f. The goal of the
acquisition function is to trade off exploration, i.e., learning
about uncertain inputs, and exploitation, i.e., choosing inputs
that lead to low cost function values. Thus, BO reduces the
original black-box optimization problem to cheaper problems
2y = argming y acqy (). One of the most popular acqui-
sition functions, GP-LCB (Lower Confidence Bound) [27],
uses the so-called principle of optimism in the face of uncer-
tainty. The idea is to rely on an optimistic guess of f(z) via
the lower confidence bound in Eq. (5) and choose z; with the
lowest guess. Algorithm 1 provides the standard BO loop.

Algorithm 1 Bayesian Optimization loop
1: Prior f ~ GP(0,k)

2. fort=1, ..., T do

3: xy — argmin, c , acq, ()

4 Observe y; + f(x¢) + e(xt)
5: Update G P posterior with y;




A. Safe optimization under constraints

Consider a safety metric ¢ : X — R, which should stay
bounded within a predefined region with high probability.
Formally, the optimization problem is then

géi;l{f(x) | a(z) < c}, (6)

under the feasibility assumption {z | ¢(x) < c} # 0, for a
given ¢ € R. The safety metric ¢(z) here is an unknown,
expensive-to-evaluate function that should be learned on the
fly. GoOSE extends any standard BO algorithm providing
high-probability safety guarantees in such a setup [11].
GoOSE keeps track of two subsets of the optimization
domain: the safe set X, and the optimistic safe set X"
X, contains the set of points classified as safe while X;” k
contains the points that potentially could be safe, i.e.,

Xy = {x € X | uch}(z) < ¢}, (7)
X' =z e X |3z W, st gi(z.2)>0}. (8

Here, the subscript ¢ indicates the iteration of the Bayesian
optimization, and the superscript ¢ marks the constraint
g(z). Wy C X, is the set of expanders - the periphery
of the safe set such that Vx € W; it holds true that
|ucbf(z) — lcbf(x)| > €, and g§ (7, z) is the noisy expansion
operator taking values of 0 or 1, defined as:

gi(z,x) =T leb](Z) + ||y (@)]|  d(Z,2) +e <], (9)

for some € >0 uncertainty threshold relating to the
observation uncertainty of ¢(z) (see also [11]). ||x (Z)|| is
the mean of the posterior over the gradient of the constraint
function, and d(-,-) is the distance metric associated with
Lipschitz continuity of ¢(x). Prior to the initialization
of BO, GoOSE assumes a known non-empty safe seed
Xy, which does not need to be large in size and can be
constructed from previous measurements.

The acquired points belong to the joint domain X, U X"

argmin
ze{XUx P}

acq (). (10)

Ty =
If 24 € X, f(x:) and g(x:) are evaluated via available
observations. Otherwise, if z; € Xfp t, then an expander of
the safe set is evaluated. This strategy allows both to query
the points satisfying the constraints and strategically expand
the safe set in the direction of a promising input.

B. Risk-averse optimization

Consider two different solutions that have similar
expected function values but one produces noisier
realizations (see Section V as a toy example). This is
important when it comes to the actual deployment of the
solutions in a real system where one might prefer more
stable solutions. While standard risk-neutral BO methods,
such as GP-LCB, provide guarantees in the risk-neutral
(homoscedastic/heteroscedastic) BO setting [27], they might
fail in the risk-averse setting. To this end, [25] proposes a
practical risk-averse algorithm with theoretical guarantees.

Mean-variance objective is a simple and frequently used
way to incorporate risk:

min{ MV (z) = f(z) + ap*(z)}

Y

with « > 0 is the coefficient of absolute risk tolerance.
Intuitively, the noise variance p?(z) acts as a penalizing term
to the objective f(z), encouraging to acquire points with less
noise. The coefficient of absolute risk-tolerance a allows
accounting for various degrees of risk tolerance, with o = 0
corresponding to the risk-neutral case of using GP-LCB.
Acquision function. Since the noise variance is unknown
in practice and both f(x) and p(x) are learned during the
optimization, RAHBO proposes the acquisition strategy
trading off not only exploration-exploitation but also risk:

acq, (z) = lcb! (z) + o 1eb? (z), (12)

where lcby®" denotes the lower confidence bound Eq. (5)
constructed for the variance p?(x). For the latter, one need
to observe evaluations s7 of the noise variance, which is
done by querying k observations {y{}* | of f(z) at z;:

k

k
1<n 1 .
ve=q > yi, si= y— > “[ye — yi(zo))*.
i=1

i=1

13)

The empirical variance s7 serves as an unbiased estimator for
p?(x;), and it is used for constructing G Pv%", explained be-
low in Section IV. For a complete introduction and treatment
of RAHBO, we refer the reader to [25]. Having introduced
RAHBO, constituting an important part of the framework
presented in this work, we are ready to present RAGoOSE
— our Safe Risk-averse Bayesian Optimization method.

IV. RAGOOSE: SAFE RISK-AVERSE BO

We aim to minimize the risk-averse mean-variance objec-
tive subject to unknown safety constraint function. Similar
techniques could be used to capture heteroscedastic noise in
the constraint measurements. Formally,

min{MV(z) | ¢(z) < c}, (14)
for a given ¢ € R. As before, we get noise-perturbed
evaluations as follows: m(z) = g¢(z) + g, with
gq ~ N(0,02), 02 > 0, ylx) = f(x)+ e(x) with
e(x) ~ N(0,p?(x)) and similarly s(z) = p*(z) + cpar
with €,4, ~ N(0,02,,.). The latter is observed through

’ var

sample mean y; and variance sf defined in Eq. (13).

A. Building blocks of RAGoOSE

The main elements enabling the safe and risk-aware
optimization of RAGoOSE rely on RAHBO and GoOSE.

RAGOoOSE probabilistic models. To reason under un-
certainty about the unknown objective f(x), noise variance
p*(z) and safety metrics g(x), we model each with a GP
- GPf, GPv*" and GPY, respectively, characterised by a
kernel function xf , k%", and k9, respectively.



The posteriors of GP?*" and GP}! can be simplified since
the variance p?(z) and safety metrics g(z) are assumed to
be perturbed by homoscedastic noise:

pi () = w5 (@) (K] + 07D ™ ye,
q

of*(x) = Kz, 2) — &7 (@)" (K] + 071) 'K (),

where I € R**? is the identity matrix, and the rest corre-
sponds to the notation in Egs. (3) and (4). The posterior mean
and variance equations for GP}*" are built analogously.

The posterior GPtf in Egs. (3) and (4), however, relies
on the unknown noise variance p?(z) in X;. To this end,
[25] proposes instead to use 33, with the upper confidence
bound uch; " (+):

3, = +diag(ucby ™" (z1),...,uchy*" (z;)),  (15)
where 3, is corrected by k due to the sample mean.
This correction guarantees correct, though conservative,
confidence bounds for the objective f(x), thus allowing for
effective optimization (see [25] for more details).

We assume the functions f(z), ¢(x), and p?(x) to belong
to RKHS (Reproducing kernel Hilbert space) associated by
their respective kernels and have bounded respective RKHS-
norms, other assumptions follow [11], [25]. Under these
assumptions, the lower and upper confidence bounds for
the functions are defined according to Eq. (5) and denoted
as lebi(x),ucbi(x) for ¢(x) and lcby*" (z),uch;*"(z) for
p%(z). The corresponding parameters 3/, 39, and %" are
individually adjusted to ensure the validity of confidence
bounds and balance exploration vs. exploitation (further
referenced collectively as  parameters).

RAGOOSE acquisition strategy. With the confidence
bounds defined, RAGoOSE acquires point x; at each
iteration ¢ following the acquision strategy in Eq. (12)
conditioned on the safety of the inputs. Particularly, x; is
obtained by:

argmin {1Cb{(l‘) + a leby*"(z)}
ze{XUxSPY}

(16)

Ty =

As described in [25], the framework allows for fine-tuning
the trade-off between exploration, exploitation, and risk. This
is exactly done via the parameter 3/, allowing to adjust
exploration vs. exploitation trade-off of the objective, and
«, adjusting the trade-off between optimum value of the
expected objective and the associated observation variance
at this point. While higher values of 57 result in a more
exploratory behaviour of the algorithm, higher values of «
result in a more risk-aware algorithm. However, the parame-
ters SV*" and (7 act as tuning knobs to control exploration.
As acq,(z) is using leby®", an increasing 37" corresponds
to a more optimistic belief on the observation noise variance
of f(x), whereas an increasing 37 corresponds to a smaller
safe set X}, and hence, to a more conservative estimate of
the true safe set Xyqr. via X, where Xy, is defined as
Xsage = {x € X | q(z) < c¢}. RAGoOSE keeps track of its
own estimate of the safe set A; and the optimistic safe set
X7 ¢ defined in the same way as described in section IIL.

B. The Algorithm

Initialization. We assume the compact optimization
domain X C R? to be defined and known, and an initial
set of ny observations Dy = {y;};°;, Dy = {m;};°;, and
Dyar = {s:}12, for f(z), q(z), and p*(z) at z € Xy C
Xsare © X must be available. We use X as a safe-seed
set required for RAGoOSE initialization, and as a fallback
input in case no safe inputs are found through RAGoOSE
iterations. Given the initialization sets, we initialize the three
Gaussian processes G P/, GPV*" and GP? with pre-selected
kernels for the GPs and tune their hyperparameters.

We then configure the RAGoOSE optimization with
our selected values of « and 3, defining the exploration-
exploitation-risk aversion setting. Additionally, we select
appropriate uncertainty threshold parameter e governing
the augmentation of the set of expanders, via the noisy
expansion operator g¢. We also set the number of evaluations
per iteration k, and the total number of iteration loops of
RAGOOSE, T.

Optimization loop. Having set the configuration and all
parameters and input sets initialized, we present the main
algorithm of our work, representing an end-to-end execution
of RAGoOSE, in Algorithm 2. We note that an explicit
modeling of the variance in the constraint evaluations is
not included, though a possible extension of the algorithm.
Furthermore, the expansion strategy (see Algorithm 2 line
12-15) is not risk-averse, since the expanders are only
evaluated to potentially enable an optimizer for evaluation.
As final result the pessimistic optimum of the GPs is chosen
(see Algorithm 2 line 16), to ensure that the optimal cost has
both low mean and low uncertainty predictions.

Algorithm 2 RAGoOSE optimization loop

1: Input: Parameters o, 3, k, €,
Initial data Xo, D¢, Dyar, Dq»
Kernel functions xf, k2, kV07,
Prior means ,LL(f), pd, uger

2: fort=1,2,... do

3: update GP¥, GPver, GPY

4: X {z e X ul(z) <c}

5: Li <+ {z € X : 3z ¢ Xy, with d(z,2) < Az}

6: Wi+ {z € Li s ui(z) — I} (z) > €}

7 if 11 = Zopt then

8 {icb () + a 1cb??" ()}

Topt argmin
se{X,UX]P"}

9: if ucby(z) < c then
10: T < Topt
11: evaluate y;, m¢, s?
12: else
13: Texp < argmingcyy, d(x, Topt): g5 (x, Topt) # 0
14: Tt < Texp
15: evaluate yi, m¢, sf
16: Output: z7%, ., argmin{ucb{(:v) + o uchy*" ()}

rEX}

C. Implementation

When optimizing the acquisition function, the current
implementation of RAGoOSE uses particle swarm
optimization (PSO) [29], that initializes a set of particles
across Xy, and through its update rules also allows the
particles to expand into the optimistic safe set A",
avoiding calculating the optimistic safe set explicitly [11].



Another important aspect affecting the performance of
the algorithm is the chosen discretization size Az, as
finer discretization allows a better assumption of Xfp t,
due to a finer grid of expanders, while slowing down
the computation time of the algorithm. We follow the
rule-of-thumb in selection of the discretization step from [7]
based on the lengthscale parameter ¢? of the GP? kernel
k%, with Az s.t. k9(z, x + Ax) (Jq)_2 =0.95.

The parameter § = 3 was fixed for every GP of the
implementation, resulting in a 99% confidence interval. The
exploration threshold was set to € = 60, for all experiments
(see also Algorithm 2 line 6). The observation window
k = 10 was chosen empirically, balancing the evaluation
time and the representativeness of the sample mean y; an
variance s? of the true mean and variance at ;.

V. CASE STUDY

We now apply the proposed approach, first on an il-
lustrative example (sinusoidal function with varying noise
levels), then on a numerical simulation of a precision motion
system, and finally we run experiments on the real system.
In the synthetic example the hyperparemeters were tuned
every iteration minimizing negative log marginal likelihood.
The hyperparameters we used for the GPs in the other
experiments can be read from:

Numeric experiment f q p?
1= [P, Vil T [50, 200" [50, 200]™ [50,200]"
(0n, 105 A) 2, 6, 0) “, 6, le-2) (1e-2, 0.3, 1e-6 )
Real experiment f q p?

1 = [P, Vi, Vi Al T
(on, 1o, A)

[50, 100, 200, 0.5]7
(1, 4.61, 0)

[50, 100, 200, 0.5]7
(le-2, 0.192, 9e-4)

[50, 100, 200,0.5]7
(le-3, le-2, le-6)

TABLE I: GP Hyperparameters for experiments in section V

All experiments use a RBF kernel
(z—a’)?

o2 exp(—*“552-) for all GPs. All priors are set to a constant

po. For the cost function GP/ the noise is modeled by
GPUG/I‘.

A. Synthetic problem

We study RAGoOSE on a synthetic optimization
problem, and compare it with two baselines - GoOSE [11]
and Constrained Bayesian Optimization (CBO) [13].

Problem Setup. We use a sinusoidal cost function f(z)
and observe its noisy evaluations y(x), with the cost ob-
servation noise variance function p?(x) as shown in Fig. 1.
Similarly, we observe the constraint function ¢(x) via its
noisy observations m(z), with a homoscedastic noise vari-
ance of o, = 0.1. Performance was assessed by repeating
the optimization 30 times, with 7" = 200 BO iterations
each, and £k = 10 evaluations of the cost function. We
repeat the optimization routine with RAGoOSE for all o €
{0,10,30}. As Section V illustrates, the set-up gives rise
to 3 optimizers - x{y,, that violates the constraint, xj;pt,
located at the low observation noise variance region of the
domain, and z7%;y,, located in the high-variance region. All
GPs were initialized with five a priori known points within
the safe set interval z € [0,1]. In Fig. 2 we report the
mean cost function f(z;), observation noise variance p*(z;)

k(z,z') =

— y=f(x) =sin(2nx) === c=3
N/ y=g)=-2x+1 Xyafe

X
0.0200
/13(3():0,01 +<"(‘)‘b'(‘”+|
0.0175
=
&~ 0.0150
Q
0.0125
0.0100
X

Fig. 1: Nlustrative example in the case study. Top: Objective f(z) with 3
global maxima marked as (xcv , Zopt, € pry) and constraint function g(x)
over the same domain showing that only two optima (:popt, Ty ) are safe;
Bottom: Heteroscedastic noise variance p2(z) over the same domain: the
noise level at (xcv, Topt, TEv ) varies according to the sigmoid function.
with the best performing RAGoOSE configuration and the
benchmarks, and the intermediate regret v, with varying «
(with 7 defined in Eq. (17)) with +2 standard errors (SE)
across the n = 30 performed repetitions of the optimization
routine

re = [f(@op) +50p%(25p)] — [f(xe) + 500 (20)] -

We report a constraint violation when the observed value
my exceeds the constraint upper bound ¢ = 3.

Results. All methods were able to converge to the opti-
mum of the cost function successfully, as shown in Fig. 2.
While RAGoOSE requires more iterations to converge, it
shows superior performance in observation noise variance,
converging to xy,,, yielding a 41% and 31% decrease in
observed noise variance, compared with GoOSE and CBO
respectively. It is shown, that CBO results in a significantly
higher rate of constraint violations, because instead of only
considering points that are with high probability safe as
in GoOSE, CBO only weighted the acquisition function
with the probability of feasibility for each candidate . We
observe a closer convergence to the low-variance optimum
with increasing «, as Fig. 2c reports, with a = 50 yielding
the lowest regret at the terminal iteration. As expected, the
risk-neutral case of o = 0 fails to converge to the risk-averse
optimum xy,,, yielding the highest intermediate regret r;.
RAGOOSE outperforms the other benchmarks in the number
of constraint violations. The benchmark study results are
summarized in Table II. The additional computation due to
modeling the noise variance slows down the optimization
time of RAGoOSE, but increases the performance and re-
duces constraint violations. Furthermore RAGoOSE shows
slightly better prediction of the final optimum mean value,
within one standard deviation of the noise.

B. Controller Tuning for Precision Motion

a7

We now introduce the motion system, its controller, and
the optimization setup, and then proceed with numerical
results, followed by the experimental implementation.



—— RAGOOSE, a=50 —— GOOSE —— CBO 0.0200
oo _oors
~ >
= SS 0.0150
=S_o0s x
0.0125
_10 A\ 0.0100
0 20 40 60 80 100 0 20

t, optimization iteration
(a) Cost function f(z¢) &+ 2SE

t, optimization iteration
(b) Noise variance p?(z+) + 2SE

0.0
-0.5
S
-1.0 —— RAGOOSE, a=50
——— RAGOOSE, a=10
-15 —— RAGOOSE, a=0
40 60 80 100 0 20 40 60 80 100

t, optimization iteration
(c) Regret 7

Fig. 2: Numerical study results for synthetic function (see Figure 1), number of iterations ¢ = 100, and n,.p = 30 repetitions for each experiments,
with reported average and two standard errors (SE). RAGoOSE successfully converges to the minimum of the cost function (a), while obtaining a lower
observation noise at the solution (b) compared to the benchmarks. (c) Regret convergence as a function of the of o parameter.

Metric/Parameter RAGoOSE  GoOSE CBO
fz*) -0.999 -0.987 -0.999

p%(z*) 0.011 0.018 0.016
Constraint violations 0.03% 0.07% 7.90%
Mean optimization time [s] 68.6 28.4 21.4

TABLE II: Mean optimized performance metric (cost) f(z*), mean noise
parameter p2(z*), constraint violations and optimization time for different
BO-based tuning methods applied on the synthetic problem across the 30
optimization experiments

Controller

Fig. 3: Top: Simplified controller architecture in the experimental study.
Bottom: Positioning system by Schneeberger Linear Technology AG.
System and controller. The system of interest is a linear
axis of a high precision positioning system by Schneeberger
Linear Technology, shown in Fig. 3. The axis is driven by
a permanent magnet AC motor equipped with nanometer
precision encoders for position and speed tracking. The
axis is guided on two rails, reaching positioning accuracy
of < 10pum, repeatability of < 0.7 um, and 3o stability
of < 1nm. The sampling time of the controller and the
date acquisition of the system used is f; = 20kHz. Such
systems are routinely used for production and quality control
in the semiconductor industry, in biomedical engineering,
and in photonics and solar technologies. For example, in
semiconductor manufacturing applications, considering risk
or safety alone is not enough due to stringent production
requirements. Therefore a tuning method that considers both
process variance and safety, e.g., RAGoOSE, is beneficial.
The system is controlled by a three-level cascade con-
troller shown in Section V-B. The outermost loop con-
trols the position with a P-controller Cp(s) = Fp, and
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Fig. 4: Left panel: S-curve position reference function indicating move- and
settle time. Right panel: position error pe (¢;) example (highlighted in black)
and £(i,ns) filter.
the middle loop controls the velocity with a PI-controller
Cy(s) = Vip + Vii/s. The inner loop, which controls the
current of the drive, is well-tuned and not subject to tuning.
Feedforward structures are used to accelerate the response
of the system. The gain of the velocity feedforward Vi is
well-tuned and not modified during the retuning procedure,
while the acceleration feedforward gain Ag is retuned by
the algorithm during the experiments on the real system and
fixed to Ag = 0 for the simulation experiments.
Optimization setup. We optimize the controller parame-
ters providing the best tracking performance of the system,
while avoiding instabilities of the controller in the presence
of heteroscedastic noise. We estimate both the tracking
performance and potential instabilities via the corresponding
data-driven features ¢(z) and ¢(z) extracted from the system
signals. The optimization problem can be written as follows:

min{¢(x) | ¢(x) > c}.

Specifically, the performance tracking metric is provided by
¢(X) = npins Z?:Pns g(ivns)pe(ti” + 6(X) Here, pe(ti)
indicates the deviation from the reference position at each
time instance ¢; (see Figure 4), ¢ indicates if additional noise
is added to the metric (only used in the numerical study).
The stability (safety) constraint ¢(x) is calculated from the
Fourier transform of the filtered velocity error F[v,(¢;)] and
limited by a threshold c. The threshold is determined by
a small number of prior experiments. Furthermore, in the
experimental study, both the performance and the stability
metrics are filtered by a right-sided sigmoid function £(%, n;)
centered at 150ms after the start of the settling phase for
robustness of the metric (see Figure 4). The settling phase
extends from time instance ng to time instance n,. The
optimization is over the controller gains F, Vip, Vi and
the feedforward gain Ag.

We solve the optimization problem using RAGoOSE,
following (14) and Algorithm 2. As our system exhibits




heteroscedastic noise which is included in ¢(x), to provide
the model for its variance i.e. p?(x), we need to acquire
multiple repetitions at each candidate gain combination
x. For observations of f(x), we use the mean of the
observations over the n repetitions, while we use the variance
for p?(x). The optimum of the RAGoOSE experiments is
found using the pessimistic prediction given by:

2* = argmin{uch/ (x) + & uch?™" (x)}. (18)

XEX

Numerical study. We perform the RAGoOSE optimiza-
tion on a simulation of a single axis comparing the effect of
o = 0 and a = 100 with T" = 200 Bayesian optimization
iterations and n = 10 evaluations of the cost function at
each iteration. For simplicity we only optimize the gains
x = [P, Vi) in the simulation experiment. All RAGoOSE
experiments are initialized using 3 initial samples, zo =
[[200, 1000], [300, 1000], [200, 1500]]7. To simulate the het-
eroscedasticity of the observations, non uniform noise is
added on the cost function, dependent on one of the two
parameters, e.g. for x; = Vi,

N(0,1e — 7),x3 < 1200
6(x1) =

N(0,1e —5),x; > 1200.

Each experiment has ten repetitions for each candidate

combination of parameters x, to estimate the noise variance

p(x). Furthermore, we repeat the RAGoOSE optimization

ten times. Figure 5 shows the range of values for f(x) and

p(x), obtained for each iteration during the ten repeated

optimizations. The solid lines show the median over the
repeated optimizations.
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Fig. 5: Optimization results (numerical) for controller tuning comparing

RAGOOSE using a = 0 with o = 100 for 10 different experiments. (a)
Median and min-max interval of f(x) over the 10 RAGoOSE optimizations
for each iteration. (b) Median standard deviation of the cost p(z) over the
10 repeated RAGoOSE optimizations for each iteration together with its
min-max interval.

During the simulation experiment of the Argus linear axis,
RAGOOSE using @ = 0 and = 100 show significant
differences in performance and observation noise (see Fig-
ure 5). While both RAGoOSE configurations quickly find
a parameter combination resulting in good performance, but
high risk, RAGoOSE with ac = 100 continues the exploration

and finds a combination resulting in lower risk and thus also
better performance, due to the effect of the noise on the
cost observation. In contrast, RAGoOSE « = 0 remains in
a local optimum, where most of the explored configurations
and their corresponding cost belong to the high noise level.

Experimental Study. We perform the optimization with
RAGOOSE using @ = 0 and a = 100 with T" = 100
Bayesian optimization iterations and n = 10 evaluations of
the cost function at each iteration. We show the distribution
of the observations of the mean f(x;) and the observations
of the variance p?(z;) of ¢(x) in Figure 6. We further
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Fig. 6: Optimization results for controller tuning using RAGoOSE with,
a = 0 (left) and oo = 100 (right). Mean observation over the 10 repetitions
f(x) (x-axis) is plotted against the noise observation p2(x) (y-axis), for
one RAGoOSE optimization. The resulting data points are color-coded
corresponding to the values of one of the optimization variables, Ag, to
visualize the heteroscedasticity of the noise, which induces the particular
shape of the obtained distribution with distinct ’branches”, corresponding
to high or low noise.

compare the performance of RAGoOSE using a = 0 and
o = 100 for controller tuning of the three controller gains
(FPip> Vip> Vii) and on the acceleration feedforward parameter
(Ag) with the performance of the auto-tuning routine of the
built-in hardware controller balancing bandwidth with phase
and gain margin method on the real Argus linear axis. Both
RAGOoOSE optimizations were stopped after 100 iterations.
The first point of each of the two data-driven optimizations
corresponds to the controller parameters found by manual
tuning, with 2o = [200, 600, 1000,0.0]T. Figure 6 shows
the distribution of cost mean observations f(z;) with the
corresponding variance observation p?(x;). Clearly, o = 100
avoids high risk parameter combinations compared to using
o = 0 and the preferred candidate controllers are along low
variance regions, corresponding to lower values of the Ay
parameter which is mostly associated with heteroscedastic

noise. The performance of the controllers corresponding
RaGoOSE aa =0 RaGoOSE o = 100  Auto-tuning
f(@*)[nm] 2.459 2.543 4.987
P (z*)[nm?] 9.187¢-3 8.347e-3 5.832e-3
P 330.4 319.8 350.0
Vi 731.6 862.4 600.0
Vi 1449.3 1174.6 2000.0
A 0.83 0.815 0.0

TABLE III: Optimized performance metric (cost), noise parameter, and
corresponding controller parameters for different values of «, compared
to the controller’s inbuilt auto-tuning in the experimental study.

to optima found by RAGoOSE using o = 0 and o = 100



(see Figure 6) after ¢ = 100 iterations is similar in tracking
performance (cost) and in variance. This is a result of the
specific heteroscedasticity of the system’s noise. Due to the
distribution of the noise, the parameter regions of optimal
performance correspond to the parameter regions of low risk,
situated in the bottom left corner of the graphs in Figure 6.
Thus, the final result of the RaGoOSE optimization is not
strongly dependent of the choice of a. Both methods show
significant improvement compared to the controllers tuned
using the built-in auto-tuning routine (see Table III), due
to the contribution of the noise model in the performance
modelling. There were no constraint violations observed
during the optimization of both RAGoOSE experiments. In
terms of duration of the tuning, RAGoOSE needs ten times
more evaluations, to estimate the noise variance, which
slows it with one order of magnitude, compared to methods
not considering heteroscedastic noise. In addition, as shown
in Table II, it is slower due to the additional GP model
of the noise. Thus, one iteration of RAGoOSE for tuning
the precision motion system takes 32s, compared to 1.6s
achieved with the method from [11].
VI. CONCLUDING REMARKS

We presented a risk-averse Bayesian optimization
framework that performs constrained optimization with safe
evaluations, accounting for the solution variance. To this
end, we considered heteroscedastic noise in the process and
extended the RAHBO method to consider the safety of eval-
uations in terms of constraint violations. We present results
in both numerical benchmark studies and on a real high-
precision motion system to show the improved performance
over state-of-the-art methods. We demonstrate the proposed
framework on a controller tuning application where safe
evaluations are crucial to ensure physical safety. Future work
will consider extending RAGoOSE to include the variance
from the measurements of the constraints in the optimization.
From the application perspective, the next challenge is
applying the method in continuous optimization scenarios,
without disrupting the operation of the physical system.
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