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Abstract

Ensuring safety is a key aspect in sequential decision making problems, such
as robotics or process control. The complexity of the underlying systems often
makes finding the optimal decision challenging, especially when the safety-critical
system is time-varying. Overcoming the problem of optimizing an unknown
time-varying reward subject to unknown time-varying safety constraints, we pro-
pose TVSAFEOPT, a new algorithm built on Bayesian optimization with a spatio-
temporal kernel. The algorithm is capable of safely tracking a time-varying safe
region without the need for explicit change detection. Optimality guarantees are
also provided for the algorithm when the optimization problem becomes stationary.
We show that TVSAFEOPT compares favorably against SAFEOPT on synthetic
data, both regarding safety and optimality. Evaluation on a realistic case study
with gas compressors confirms that TVSAFEOPT ensures safety when solving
time-varying optimization problems with unknown reward and safety functions.

1 Introduction

We seek to interactively optimize an unknown time-varying reward function f : X × T → R, where
X is a finite set of decisions, and T := {0, 1, 2, . . . , T}, T ∈ N+ denotes the discretized time
domain. We assume that the optimization problem is safety-critical, that is, there are constraints that
evaluated decisions must satisfy with high probability. Similar to the reward, the constraints are also
unknown and potentially time-varying, encoded through ci : X × T → R, i ∈ Ic := {1, 2, . . . ,m},
where m ∈ N+ denotes the number of safety constraints. The optimization problem at time t is

max
x∈X

f(x, t)

subject to ci(x, t) ≥ 0, i ∈ Ic
(1)

Both the reward function and the safety constraints are assumed to be unknown but can be evaluated.
This is a plausible setting, for example, for UAV that need to perform rescue missions in dangerous
and poorly lit environments.
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Figure 1: Comparison of safe sets computed by TVSAFEOPT (top row), ETSAFEOPT (middle row),
and SAFEOPT (bottom row) at t = 30, t = 100, and t = 170. Because TVSAFEOPT takes the
possible changes in time into consideration, the safe sets computed by TVSAFEOPT are contained in
the ground truth safe regions while those computed by ETSAFEOPT and SAFEOPT have multiple
violations. The reason for the violations in ETSAFEOPT is that the algorithm is unable to detect small
changes in the constraints, confirming that the performance of ETSAFEOPT depends on the event
detection algorithm.

1.1 Related Work

Bayesian Optimization (BO) is a well-established approach for interactively optimizing unknown
reward functions. Various BO based approaches have been proposed to solve a wide range of
problems in robotics [1, 2], combinatorial optimization [3], sensor networks [4], and automatic
machine learning [5, 6]. However, Safe Bayesian Optimization in the time-varying setting is still
under-explored.

Safe Bayesian Optimization To address safety requirements in safety-critical applications, Safe
Bayesian Optimization (SBO) [7] has been proposed to avoid unsafe decisions with high probability
by interactively optimizing a reward function under safety constraints. SAFEOPT [7], one of
the first SBO algorithms, expands an initial safe set iteratively based on new evaluations and an
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Table 1: Overview of safe learning methods based on BO for time-varying problems.

Handling Changes Safety Guarantee Optimality Guarantee Safe Seed
in Time

A-GOOSE [21, 17] Spatio-temporal kernel ✓ ✗ For all t
C-SAFEOPT [8] Spatio-temporal kernel ✓ ✗ For all t

ETSAFEOPT [22] Event detection ✗ ✗ For all t
TVSAFEOPT (ours) Spatio-temporal kernel ✓ ✓ For initial t

updated Gaussian Process (GP) model of safety functions. It calculates two subsets, maximizers
and expanders, from the current safe set and selects the most uncertain decision within their union
to balance maximizing the reward function and expanding the safe set. Subsequent algorithms extend
SAFEOPT to handle multiple constraints [8], decouple safe set expansion from optimization [9], and
expand the safe set in a goal-oriented manner [10]. These methods also explore disconnected safe
regions [11, 12] and enhance information-theoretic efficiency [13, 14]. They have been applied to
controller tuning for a ball-screw drive [15] and quadrupeds [16], and adaptive control on a rotational
motion system [17]. However, SBO typically does not take into account changes with time.

Contextual Bayesian Optimization Contextual Bayesian Optimization (CBO) has been introduced
to address the influence of external environmental factors on reward and safety functions. Krause
and Ong [18] extend the Gaussian Process Upper Confidence Bound (GP-UCB) algorithm [19] by in-
corporating contextual variables into unconstrained BO, demonstrating sub-linear regret analogous to
GP-UCB. An advancement of this framework is proposed in [20], with the Safe Contextual GP-UCB
optimizing the contextual upper confidence bound within a safe set to manage room temperature
via a PID controller. Berkenkamp et al. [8] present a contextual adaptation of SAFEOPT, discussing
its safety and optimality guarantees by framing contextual SBO as distinct SBO sub-problems.
Additionally, König et al. [21] extends GOOSE [10] to the contextual domain for model-free adaptive
control scenarios. Similarly to SBO, CBO does not explicitly consider time-varying problems.

Time-Varying Bayesian Optimization Time-Varying Bayesian Optimization (TVBO) addresses
problems where the objective is time-dependent, modeled with a temporal kernel [23]. Methods in
this setting include periodical resetting [23], change detection [24, 25], sliding-window approaches
using recent data [26], and discounting via exponentially decaying past observations [27]. However,
these techniques have been developed for unconstrained BO and are unsuitable for safety-critical
applications.

Time-Varying Safe Bayesian Optimization In the safety-critical time-varying setting, contextual
lower confidence bounds can be optimized within the safe set [20], but it does not guarantee
optimality theoretically. An event triggering mechanism is introduced to SBO to restart exploration
from a backup policy [22], but it may not trigger reliably during changes, posing a safety risk.
Extensions to SBO with contextual variables provide theoretical safety and optimality analyses
[8, 16], treating contextual SBO as separate sub-problems for each contextual value, and assuming
an initial safe set for each. However, ensuring optimality requires each contextual value to appear
frequently, which is impractical in time-varying scenarios.

1.2 Methodology and Contributions

Methodology We propose the TVSAFEOPT algorithm to optimize an unknown time-varying reward
subject to unknown time-varying safety constraints. The algorithm focuses on Time-Varying Safe
Bayesian Optimization (TVSBO). TVSAFEOPT utilizes a spatio-temporal kernel and time Lipschitz
constants as prior knowledge about how the problem depends on time. The temporal part of the kernel
encodes the continuity of the functions with time while the Lipschitz constants explicitly provide upper
bounds on how fast the functions may change. Instead of considering safe sets at previous iteration as
safe at the current iteration, which might lead to unsafe decisions, TVSAFEOPT robustly subtracts the
safety margin when updating the safe sets (Figure 1). In this way, the algorithm is capable of adapting
in real time and guarantees safety even when exploring the safe region of non-stationary problems.

Contributions Our contributions are threefold: a) We propose the TVSAFEOPT algorithm based
on Gaussian processes with spatio-temporal kernels; b) We provide formal safety guarantees for
TVSAFEOPT in the most general time-varying setting and optimality guarantees for TVSAFEOPT for
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locally stationary optimization problems; c) We show TVSAFEOPT performs well in the most general
time-varying setting both on synthetic data and on a realistic case study on gas compressors. In Table 1,
we compare Adaptive GOOSE, Contextual SAFEOPT, ETSAFEOPT, and TVSAFEOPT in terms of
how they handle changes in time, safety guarantees, optimality guarantees, and required safe seeds.

1.2.1 Expected societal impact

The TVSAFEOPT algorithm proposed in this paper extends the state of the art in Time-Varying Safe
Bayesian Optimization by enabling solving optimization problems with time-varying reward and
constraints without pre-defining the time changes that can be compensated.Thus, the algorithm can
be used at the design stage of operating strategies for safety-critical systems, such as medical dosage
design [28] and controller design in robotics [17], or during online operation of chemical plants [29]
or autonomous racing [30].

2 TVSAFEOPT Algorithm

The TVSAFEOPT algorithm builds upon SAFEOPT [7], to handle time-varying reward function and
safety functions. The key new feature of TVSAFEOPT is its capability of safely transferring the current
safe set to the next time step. TVSAFEOPT achieves this with the help of the spatio-temporal kernel
as well as the sequence of time Lipschitz constants. The approach is summarized in Algorithm 1.

2.1 Assumptions

Following [8], we incorporate the reward and safety functions into an auxiliary function h : X ×T ×
I → R, where I := {0} ∪ Ic,

h(x, t, i) :=

{
f(x, t) , if i = 0

ci(x, t) , if i ∈ Ic
(2)

We model the auxiliary function using a prior Gaussian Process (GP) with zero mean and spatio-
temporal kernel κ : (X ×T ×I)× (X ×T ×I)→ R, [31]. We require h to be Lipschitz continuous
with respect to both x and t, and to have bounded norm in the Reproducing Kernel Hilbert Space
(RKHS) [32] associated with the kernel κ as formalized in the following.

Assumption 2.1. The spatio-temporal kernel is positive definite, and satisfies
κ ((x, t, i), (x, t, i)) ≤ 1, for all x ∈ X , t ∈ T , i ∈ I. The function h(x, t, i) has bounded
norm in the RKHS associated with kernel κ. The function h(x, t, i) is Lx-Lipschitz continuous
with respect to x in the domain X with respect to some metric d : X × X → R≥0 for all t ∈ N,
i ∈ I. There exists a sequence {L(t)}t∈N,t<T , such that, for all x ∈ X , i ∈ I, t ∈ N, t < T ,
|h(x, t+ 1, i)− h(x, t, i)| ≤ L(t).

At each algorithm iteration k, we make a decision xk, which we then apply to the system and get
noisy measurements yik of the reward function and safety functions during the iteration. We use the
index k to refer to the algorithm iteration. Even though k and t might differ in principle, in practice
we run one algorithm iteration k for each time step t.

Assumption 2.2. Observations yik = h(xk, t, i) + εik, ∀i ∈ I, t ∈ N are perturbed by i.i.d. zero
mean and σ-sub-Gaussian noise.

Based on the measurements, we compute the posterior GP and make the decision for the next time
step. To start the exploration, an initial set of safe decisions is assumed to be available to the algorithm.
To ensure that the safe set remains non-empty after the first iteration, it is necessary that the initial
safety function values at every decision within the initial safe set are positive.

Assumption 2.3. An initial set S0 ⊆ X of safe decisions is known and for all decisions x ∈ S0, we
have ci(x, 0) > 0, ∀i ∈ Ic.

Similar assumptions have also been made for the standard SAFEOPT algorithm [7] and are necessary
to ensure feasibility of the exploration steps and to be able to identify new safe decision.
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2.2 Safety Updates

To ensure safety, based on Assumption 2.1 and 2.2, we extend the definition of the confidence
intervals from [7] so that, with high probability, they contain f and ci using the posterior GP estimate
given the data sampled so far. The confidence intervals for h(x, t, i) given training samples until
iteration k ≥ 1 are defined for all x ∈ X and for all i ∈ I as

Qk(x, i) :=
[
µk−1(x, i)±

√
βkσk−1(x, i)

]
, (3)

where βk is a scalar that determines the desired confidence interval, µk−1(x, i) and σk−1(x, i) are
the posterior mean and standard deviation of h(x, t, i) inferred with Dk, training samples till iteration
k [31]. The probability of the true function value h lying within this interval depends on the choice
of βk [8]. We provide more details for this choice in Section 2.4.

We now construct a tighter confidence interval for h(x, t, i) by using the sequence {Qτ (x, i)}τ≤k

instead of Qk(x, i) alone. To this end, we recursively define for all x ∈ X and for all i ∈ I the
intersection

Ck(x, i) := (Ck−1(x, i)⊕ [−L(t− 1), L(t− 1)]) ∩Qk(x, i), (4)

where ⊕ denotes the Minkowski sum, C0(x, i) is [L(0),∞) for all x ∈ S0, i ∈ Ic and R otherwise.
We use the lower bound lk(x, i) := minCk(x, i) and the upper bound uk(x, i) := maxCk(x, i), to
define the width of Ck(x, i)

wk(x, i) := uk(x, i)− lk(x, i) (5)

further used to update the safe set as well as pick the next decision to explore.

Based on the updated posterior and Lipschitz constants, we can update the safe set Sk with the lower
bounds lk and the previous safe set Sk−1 as

Sk = ∩i∈Ic ∪x∈Sk−1
{x′ ∈ X | lk(x, i)− Lxd(x,x

′)− L(t) ≥ 0}. (6)

The set Sk contains decisions that with high probability fulfill the safety constraints given the GP
confidence intervals and the Lipschitz constants. In contrast to SAFEOPT, the safe set of TVSAFEOPT
is allowed to shrink to adapt to the potential change of the safe region given the time-varying setting.
However, the safe set might even become empty after the update. This is either because the safe
region indeed becomes empty or because the updated safe set conservatively excludes all decisions
with a lower bound of some safety function below L to guarantee safety. In all these cases, if the
updated safe set is empty, we terminate the algorithm.

2.3 Safe Exploration and Exploitation

With the safe set updated, the next challenge is to trade off between exploitation and expansion of the
safe region. As in the standard SAFEOPT, the potential maximizers are those decisions, for which the
upper confidence bound of the reward function is higher than the largest lower confidence bound

Mk =

{
x ∈ Sk | uk(x, 0) ≥ max

x′∈Sk

lk(x
′, 0)

}
. (7)

To identify the potential expanders, Gk, containing all decisions that could potentially expand the safe
set, we first quantify the potential enlargement of the current safe set after sampling a new decision x.
To do so, we define the function

ek(x) := |{x′ ∈ X\Sk | ∃i ∈ Ic : uk(x, i)− Lxd(x,x
′)− L(t) ≥ 0}|, (8)

where | · | refers to the cardinality of a set, and then update

Gk = {x ∈ Sk | ek(x) > 0} . (9)

At iteration k, TVSAFEOPT selects a decision xk within the union of potential maximizers (7) and
expanders (9)

xk = argmax
x∈Gk∪Mk,i∈I

wk(x, i), (10)
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Algorithm 1 TVSAFEOPT
1: Input: Sample set X

GP priors for f , ci
Lipschitz constants Lx and {L(t)}t∈N,t<T

Safe set seed S0

2: C0(x, i)← [L(0),∞), for all x ∈ S0, i ∈ Ic
3: C0(x, i)← R, for all x ∈ X\S0, i ∈ Ic
4: C0(x, 0)← R
5: Query a point x0 ∈ S0, yi0 ← h(x0, 0, i) + εi0, i ∈ I
6: D0 = {(x0,y0)}
7: for k = 1, 2, · · · , T do
8: Calculate Qk(x, i) as in (3), ∀x ∈ X ,∀i ∈ I
9: Ck(x, i)← (Ck−1(x, i)⊕ [−L(t− 1), L(t− 1)]) ∩Qk(x, i)

10: Sk ← ∩i∈Ic
∪x∈St−1

{x′ ∈ X | lk(x, i)− Lxd(x,x
′)− L(t) ≥ 0}

11: if Sk = ∅ then
12: break
13: end if
14: Mk ← {x ∈ Sk | uk(x, 0) ≥ maxx′∈Sk

lk(x
′, 0)}

15: Gk ← {x ∈ Sk | ek(x) > 0} with ek(x) from (8)
16: xk ← argmaxx∈Gk∪Mk,i∈I wk(x, i)

17: yik ← h(xk, t, i) + εik, i ∈ I
18: Dk = Dk−1 ∪ {(xk,yk)}
19: end for

with wk from (5). The objective of the greedy selection process in (10) is to take the most uncertain
decision among the expanders Gk and the maximizers Mk. The decision xk is then applied to the
system and after making observations of the reward and safety functions, yk := (y0k, y

1
k, . . . , y

m
k ),

we add (xk,yk) to the training samples.

At any iteration, we can obtain an estimate for the current best decisions from

x̂k = argmax
x∈Sk

lk(x, 0), (11)

which returns the maximizer of the lower bound of the reward function within the current safe set.

2.4 Safety Guarantee

To provide safety guarantees, we need the confidence intervals in (3) to contain the safety functions
with high probability for all iterations. Note that the parameter βk in (3) tunes the tightness of the
confidence interval. The following lemma guides us to make a proper choice for βk: This choice
depends on the information capacity γh

k associated with the kernel κ, namely is the maximal mutual
information [33] we can obtain from the GP model of h through k noisy measurements ĥXk

at data
points Xk := {(xτ ∈ X , τ, iτ ∈ I)}τ<k

γh
k := max

Xk

I(ĥXk
;h). (12)

Lemma 2.4. Assume that h(x, t, i) has RKHS norm associated with κ bounded by B > 0 and that
measurements are perturbed by σ-sub-Gaussian noise. Let the variable γh

k be defined as in (12).

For any δ ∈ (0, 1), let
√
βk = B + σ

√
2
(
γh
k·|I| + 1 + ln(1/δ)

)
, then the following holds for all

decisions x ∈ X , function indices i ∈ I, and iterations k ≥ 1 jointly with probability at least 1− δ:

|h(x, t, i)− µk−1(x, i)| ≤
√

βkσk−1(x, i).

Proof. This lemma is a straightforward consequence of Lemma 1 of [16], a contextual extension of
Lemma 4.1 of [8]. We can prove it by selecting time as the context and picking {t}t≥1,t∈N as the
context sequence.
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Lemma 2.4 indicates that, by selecting βk properly, the confidence intervals Qk will w.h.p. contain
the reward function and the safety functions. Due to this, they can be leveraged to provide theoretical
guarantees for safety and optimality.

The following theorem provides a sufficient condition for safety of TVSAFEOPT.
Theorem 2.5. Let Assumptions 2.1 - 2.3 hold, and let γh

k be defined as in (12). For any δ ∈ (0, 1),

let
√
βk = B + σ

√
2
(
γh
k·|I| + 1 + ln(1/δ)

)
, then TVSAFEOPT guarantees that with probability at

least 1− δ, for all i ∈ Ic and for all t ≥ 0, and x ∈ Sk it holds ci(x, t) ≥ 0.

The proof builds on Lemma 2.4 to show first that for all t ≥ 0, for all i ∈ I and for all x ∈ X , then
h(x, t, i) ∈ Ck(x, i) with high probability. Then using the recursive definition of the safe set from
(6), we obtain w.h.p. ci(x, t) ≥ lk(x

′, i)−Lxd(x,x
′)−L(t) ≥ 0, which concludes the proof. For

details we refer the reader to Appendix B.

2.5 Near-Optimality Guarantee

In many safety critical real world applications, such as nuclear power plant operations, medical
devices calibration, automated emergency response systems, the reward function is stationary most of
the time. The problems are stationary until some changes happen and become stationary again when
the systems reach new equilibria [34]. However, ensuring optimality is non-trivial even when the
problem becomes stationary. Suppose the auxiliary function (2) becomes stationary in a time interval
[ϕ, ϕ], namely suppose there exist ϕ > ϕ ≥ 1 such that ∀t1, t2 ∈ [ϕ, ϕ], f(x, t1) = f(x, t2) =: f̄(x)
and c(x, t1) = c(x, t2) =: c̄(x), so that the optimization problem (1) becomes

max
x∈X

f̄(x)

subject to c̄i(x) ≥ 0, i ∈ Ic.
(13)

We first define the largest safe set expanded from a set S subject to a measurement error a within

• a single time step:

Ra(S) := S ∪ {x ∈ X | ∀i ∈ Ic,∃x′
i ∈ S, s.t. c̄i (x

′
i)− Lxd(x,x

′
i)− a ≥ 0}

• n time steps: Rn
a (S) := Ra (Ra . . . Ra (Ra︸ ︷︷ ︸

n times

(S)) . . . )

• arbitrary time steps: R̄a(S) := limn→∞ Rn
a (S)

We also define L̄t as an upper bound of the sum of all time Lipschitz constants, that is,
T−1∑
τ=0

L(τ) ≤ L̄t.

We find it reasonable that a tight upper bound L̄t can be provided when the underlying system slowly
switches to the new stationarity condition.

Given these definitions, we are now in the position to provide optimality guarantees for TVSAFEOPT.
In particular, we aim at comparing the found reward value f̄(xk) with the optimal reward value
within the largest safe set obtained in ideal conditions with no measurement error, R̄0(S0). We also
aim at providing TVSAFEOPT with an upper bound on the iterations needed to find a near-optimal
solution. The following theorem states the optimality guarantee of TVSAFEOPT.
Theorem 2.6. Let Assumptions 2.1 - 2.3 hold, let γh

k be defined as in (12) and, for any δ ∈ (0, 1), let
√
βk = B + σ

√
2
(
γh
k·|I| + 1 + ln(1/δ)

)
. Define x̂k as in (11), and, for any ϵ > 0, let k∗(ϵ, δ) be

the smallest positive integer satisfying

k∗

βk∗γh
k∗
≥

b1
(∣∣R̄0 (S0)

∣∣+ 1
)

ϵ2
,

where b1 = 8/ log
(
1 + σ−2

)
. Then, the TVSAFEOPT algorithm, applied to (13), guarantees that,

with probability at least 1− δ, there exists k ≤ k∗ such that

f̄ (x̂k) ≥ max
x∈R̄ϵ+L̄t

(S0)
f̄(x)− ϵ.
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Figure 2: Comparison between TVSAFEOPT, SAFEOPT, and approximate optimization on the
gas compressor case study, showing average of 10 repetitions with different initial sets. (a): The
cardinality of the safe sets, (b): The ratio between the number of unsafe decisions in the safe sets
and the cardinality of the safe sets, (c): The ratio between the number of safe decisions in the safe
sets and the cardinality of the ground truth safe regions. TVSAFEOPT robustly shrinks its safe sets
based on its observations and thus maintains much less violations in its safe sets than SAFEOPT and
approximate optimization, at the cost of covering less of the ground truth safe region.

The proof consists in showing a decaying upper bound of uncertainty wk(x, i) ≤ ϵ and exploiting
local stationarity of (13) to provide bounds on the expansion of the safe set Sk. Details can be found
in Appendix C.

3 Experiments

3.1 Synthetic Example

We first illustrate TVSAFEOPT on a synthetic two-dimensional time-varying optimization problem

max
x,y
− ex

2

− log(1 + y2) + 0.01t

s.t.
[
x+ 0.5− 0.5

(
1− cos

2π

50
t

)
cos

π

6

]2
+

[
y − 0.3− 0.5

(
1− cos

2π

50
t

)
sin

π

6

]2
≤ 1.

Figure 1 compares the safe sets computed by TVSAFEOPT, ETSAFEOPT, and SAFEOPT at t = 30,
t = 100 and t = 170. All algorithms start from the same singleton initial safe set S0 = {(−0.5, 0.0)}.
Implementation details are described in Appendix A. Figure 1 illustrates that the safe sets computed
by TVSAFEOPT are contained in the ground truth safe regions while those computed by SAFEOPT
and ETSAFEOPT have multiple violations. Due to the dependence on time of the example (Figure 3),
the initial safe set becomes unsafe at t = 30, and t = 170. Taking the possible changes in time
into consideration, TVSAFEOPT correctly identifies the possible unsafety of the initial safe set. In
contrast, SAFEOPT always consider the initial safe set to be safe. Meanwhile, ETSAFEOPT correctly
identifies the lack of safety of the initial safe set at t = 30, but fails at t = 170. This is because
the event trigger is naturally insensitive to continuous changes. This toy example indicates that,
in contrast to SAFEOPT and ETSAFEOPT, TVSAFEOPT safely adapts to the time changes of the
optimization problem.

In this example, TVSAFEOPT and ETSAFEOPT overall find better reward function values than
SAFEOPT, see Figure 3. The reward function value found by TVSAFEOPT is close to the optimal
values when the reward function changes slowly, which supports Theorem 2.6.

Quantitative metrics are listed in Table 2. Taking SAFEOPT as a baseline, TVSAFEOPT and
ETSAFEOPT achieves less violations, lower cumulative regret at the cost of covering less part
of the safe region. Furthermore, TVSAFEOPT has little violations, and achieves larger coverage ratio
than ETSAFEOPT. Meanwhile, its cumulative regret is just slightly higher than that of ETSAFEOPT.
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Table 2: Synthetic example: comparison of TVSAFEOPT and ETSAFEOPT with respect to SAFEOPT,
showing the average and the standard deviation results from five runs with different initial safe sets
(chosen randomly from the feasible space).

ETSAFEOPT TVSAFEOPT
Violations -84.4% ± 1.7 % -99.99% ± 0.01%
Coverage Ratio -30.9% ± 2.9 % -21.0% ± 1.3%
Cumulative Regret -73.6% ± 14.7% -66.9% ± 14.4%

Table 3: Compressors case study: comparison of TVSAFEOPT and SAFEOPT with respect to
Approximate Optimization, showing the average and the standard deviation results from 10 runs
with different initial safe sets (chosen randomly from [x0 − 0.5/

√
3d, x0 + 0.5/

√
3d] where x0

is the initial safe seed and d is the distance to the boundary of the feasible region). ETSAFEOPT
is not included due to its high dependency on event detection methods, which are unavailable for
compressor degradation.

SAFEOPT TVSAFEOPT
Violations -89.2% ± 4.2 % -96.8% ± 1.0%
Coverage Ratio -35.7% ± 2.6 % -61.0% ± 1.3%
Cumulative Regret +95.8% ± 32.3% +178.3% ± 29.2%

3.2 Gas Compressor Case Study

3.2.1 Problem Setup

We show the performance of the proposed algorithm in a compressor station with three identical
compressors operating in parallel at the time-varying compressor head Ht with time-varying power
consumption at time t (adapted from [35], details in Appendix A.3)

min
mi

N∑
i=1

1

1− dit

(
α1 + α2m̃i + α3H̃t + α4m̃

2
i + α5m̃iH̃t + α6H̃

2
t

)
(14)

s.t.
N∑
i=1

mi ≥Mt (15)

mi ≥β1H̄
2
t + β2H̄t + β3 ,∀i = 1, . . . , N (16)

mi ≥γ1 ¯̄H2
t + γ2

¯̄Ht + γ3 ,∀i = 1, . . . , N

mi ≤δ1 ˜̃Ht + δ2 ,∀i = 1, . . . , N

mi ≤σ1
˜̄H2
t + σ2

˜̄Ht + σ3 ,∀i = 1, . . . , N, (17)

where the objective (14) corresponds to the power to run the station with N compressors, here N = 3,
affected by individual degradation dit, i = 1, l . . . , N . The station must also satisfy time-varying
demand Mt in (15). In practice, it is common to linearly approximate (16)-(17) with respect to the
compressor head Ht (dashed lines in Figure 4) [36].

3.2.2 Results

We compare the performance of TVSAFEOPT, SAFEOPT, and approximate optimization.
ETSAFEOPT is not applicable to this case study because the magnitude of changes in the demand Mt,
compressor head Ht, and degradation dit keeps triggering the event trigger and thus the maintained
safe set becomes empty very quickly. Implementation details are described in Appendix A. Figure 2
compares the number of unsafe decisions in the safe sets calculated by TVSAFEOPT, SAFEOPT, and
approximate optimization. We see that, by considering the uncertainty with respect to the decision
variables, SAFEOPT maintains fewer unsafe decisions in its safe sets than the approximate optimiza-
tion. However, SAFEOPT tends to expand its safe sets regardless of external changes. TVSAFEOPT
further improves this based on SAFEOPT by taking into consideration the time-varying safety func-
tions. TVSAFEOPT robustly shrinks its safe sets based on its observations and thus maintains much

9



Figure 3: Comparison of reward functions from different methods with different initial safe sets,
averaged over 5 runs for the synthetic example (left) and 10 runs for the compressor case study (right,
indicating power in MW obtained from maximization of (14)), with error bars, with respect to the
optimal values (black). In the synthetic example, TVSAFEOPT finds better reward function values
than SAFEOPT, and similar to these of ETSAFEOPT. In the compressor case study, TVSAFEOPT
finds lower reward function values than SAFEOPT, but guarantees fewer violations (Table 2 and 3)
than either SAFEOPT or Approximate Optimization.

less violations in its safe sets than SAFEOPT (70.4%) and approximate optimization (96.8%). It
achieves this at the cost of covering less of the ground truth safe region than SAFEOPT (39.3%) and
Approximate Optimization (61.0%).

The right-hand side of Figure 3 shows that TVSAFEOPT preserves safety at the expense of optimality.
In the compressor case study, TVSAFEOPT overall finds lower reward function values than SAFEOPT
and approximate optimization, which is consistent with the fact that it covers a lower fraction of the
ground truth safe regions and the reward function changes significantly between iterations. Because
of its strong focus on safety, TVSAFEOPT deviates more from the ground truth. The cumulative regret
of TVSAFEOPT is above the one of SAFEOPT by 42.1%, and the one of approximate optimization
by 178.3%. This illustrates the trade-off between safety and optimality in the presence of strong
uncertainties due to the varying reward and safety constraints. Quantitative metrics using Approximate
Optimization as the baseline are listed in Table 3.

4 Limitations and Conclusion

Limitations The compressor case study demonstrated that TVSAFEOPT ensures safety at the expense
of optimality if the stationarity assumption is not satisfied. The assumption about the local stationarity
of the optimization problem (1) is thus the main limitation. Even though TVSAFEOPT demonstrates
good empirical performance with respect to safety even when the problem is non-stationary,
theoretical guarantee for its near-optimality in the non-stationary case warrant further investigation.

The need for obtaining the Lipschitz constants with respect to both x and t in order to compute the
safe set Sk in (6) may prove limiting in real applications. To overcome this limitation, we propose
practical modifications in Appendix A.1.

Conclusions We propose TVSAFEOPT algorithm, which extends SAFEOPT to handle time-varying
optimization problems. In conclusion, TVSAFEOPT outperforms SAFEOPT in terms of adaptation to
changes in time and maintains fewer unsafe decisions in its safe sets for time-varying problems. This
is at the cost of covering less of the ground truth safe regions and may lead to poorer performance
in terms of optimality.

We prove the safety guarantee for TVSAFEOPT in the general time-varying setting and prove its
near-optimality guarantee for the case in which the optimization problem becomes stationary. The
two theoretical results together guarantee that TVSAFEOPT is capable of safely transferring safety
of the decisions into the future and, based on the transferred safe sets, it will find the near-optimal
decision when the reward function stops changing. We show that TVSAFEOPT performs well in
practice for the most general settings where both the reward function and the safety constraint are
time-varying, both on synthetic data and for real case study on a gas compressor.
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A Experiment Details

Experiments are conducted on an Intel i7-11370H CPU using Python 3.8.5. The implementation
utilizes the following libraries: GPy 1.12.0, NumPy 1.22.0, and Matplotlib 3.5.0.

A.1 Practical Modifications

In practice, Lipschitz constants are difficult to estimate. Thus, here we provide a Lipschitz-constant-
free version of TVSAFEOPT algorithm by modifying (6) and (8).

The safe set is updated as all decisions with non-negative lower confidence bounds for the safety
functions at the current iteration k, that is,

Sk = {x ∈ X | ∀i ∈ Ic, lk(x, i) ≥ 0} . (18)

Furthermore, the expanders are intuitively defined as decisions within the current safe set such that,
by evaluating any of the decisions, at least one decision outside the current safe set will be considered
as safe, that is, Gk = {x ∈ Sk | ek(x) > 0}, where ek(x) denotes the number of decisions outside
Sk that will be considered safe when evaluating x. Instead of using Lipschitz constants, we define
ek(x) using lower bound of auxiliary GP similar to the method by Berkenkamp et al. [37]

ek(x) =
∣∣{x′ ∈ D\Sk | ∃i ∈ Ic : lk,(x,uk(x,i)) (x

′, k + 1, i) ≥ 0
}∣∣ ,

where lk,(x,uk(x,i)) (x
′, k + 1, i) denotes the lower bound of the function values at x and t = k + 1

if x is evaluated at the k-th iteration and the upper bound is observed.

A.2 Synthetic Example

The search space is X = [−2, 2]2, uniformly quantized into 100× 100 points. Both algorithms start
with the singleton initial safe set {(−0.5, 0.0)}. The measurements are perturbed by i.i.d. Gaussian
noise N (0, 0.012).

The reward function is formulated as: f(x, t) = −ex2 − log(1 + y2) + 0.01t;

The safety function is formulated as: c1(x, t) = 1 −
[
x+ 0.5− 0.5

(
1− cos 2π

50 t
)
cos π

6

]2 −[
y − 0.3− 0.5

(
1− cos 2π

50 t
)
sin π

6

]2
.

The hyperparameters of GPs in the synthetic case study are modelled as follows,

• TVSAFEOPT: The reward function and the safety function are modeled by independent
GPs with zero mean and spatio-temporal kernel κ((x, t), (x′, t′)) = exp

(
−∥x−x′∥2

2

2σ2
1

)
·

exp
(
−( t−t′)2

2σ2
2

)
, where σ1 ≡ 1.0, σ2 = 25.0 for f , and σ2 = 15.0 for c1.

• SAFEOPT: The reward function and the safety function are modeled by independent GPs
with zero mean and 2d Gaussian kernel κ(x,x′) = exp

(
−∥x−x′∥2

2

2σ2
3

)
, where σ3 ≡ 1.0.

• ETSAFEOPT: Hyperparameters for GPs are the same as SAFEOPT. Besides, we choose the
sentivity of the event trigger δ as 0.01.

A.3 Compressor Case Study

Centrifugal compressors are often used in gas transport networks to deliver the required amount of
gas by boosting the pressure in the pipelines. Organised as compressor stations with N units, the
compressors are often operated to minimise their power consumption P while satisfying the demand
Mt and operating constraints, capturing how compressor head Ht depends on the mass flow through
the compressor [38, 39]:

• m̃i =
mi−157.4

34.37 , H̃t = Ht−1.016e5
3.210e4 , α1 = 1.979e7, α2 = 5.274e6, α3 = 5.375e6, α4 =

6.055e5, α5 = 5.718e5, α6 = 3.319e5
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• H̄t =
Ht−1.235e5

3.764e4 , β1 = −1.953, β2 = 16.86, β3 = 118.1

• ¯̄Ht =
Ht−6.152e4

7002 , γ1 = −1.516, γ2 = −11.12, γ3 = 116.9

• ˜̃Ht =
Ht−8.706e4

5.289e4 , δ1 = 73.21, δ2 = 183.7

• ˜̄Ht =
Ht−1.572e5

2.044e4 , σ1 = −7.260, σ2 = −29.65, σ3 = 204.4

The compressor case study has been adapted from [35]. The data for the demand, compressor head,
and degradation for the three compressors were obtained from [40] (Creative Commons Attribution
NonCommercial Licence).

Individual characteristics of compressors in (16)-(17) are called compressor maps (Figure 4). The
operating area for a compressor is defined by minimal and maximal speed of the compressor and
its mechanical properties. The operating area can be obtained from compressors maps delivered by
the manufacturer of the compressor, or estimated during the operation [41]. However, estimation
would require collecting datapoints close to the boundary of the operating area, which may be
unavailable due to safety consideration [42, 43]. Using safe learning has the potential to improve
the operation of the station because it enables safe exploration of the unknown operating area of
individual compressors.

Max. speed app.
Choke app.
Min. speed app.
Surge app.

Surge
Minimum speed

Choke
Maximum speed

Figure 4: Ground truth (solid) and linear approximation (dashed) of the operating area from com-
pressor maps, adapted from [44, 35]. For a given compressor head at time t (dotted horizontal line
for Ht = 120000 J kg−1), the mass flow mit through the i-th compressor is required to be between
minimum speed (red) and surge (blue) lines, and maximum speed (violet) and choke (yellow) lines

Furthermore, varying operating conditions and demand often lead to compressor degradation dit
(Figure 5), over time increasing power consumption (14) of the entire compressor station [45].
Capturing the time-varying aspect of compressor degradation is a subject of research (e.g. [46–48])
but limited availability of measured degradation data presents a challenge [49].

For convenience, the optimization variables are scaled by a factor K = 200, that is, x =
(m1,m2,m3)/K. The search space is X = [50.0/K, 250.0/K]3, uniformly quantized into
60× 60× 60 points. Both algorithms start with the singleton initial safe set {(M0,M0.M0)/3K}.
The measurements are perturbed by i.i.d. Gaussian noise N (0, 0.012).

The reward function is formulated as:

f(x, t) = −
3∑

i=1

1

(1− dit) · 107
(
α1 + α2m̃i + α3H̃t + α4m̃

2
i + α5m̃iH̃t + α6H̃

2
t

)
The safety functions are formulated as ci(x, t) ≥ 0, i = 1, . . . , 7, with:

• c1(x, t) = x1 − Lt
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Figure 5: Visualization of demand (a), compressor head (b), and degradation for the compressors (c)
changing with time.

• c2(x, t) = Ut − x1

• c3(x, t) = x2 − Lt

• c4(x, t) = Ut − x2

• c5(x, t) = x3 − Lt

• c6(x, t) = Ut − x3

• c7(x, t) = x1 + x2 + x3 − 0.67Mt/K,

where Lt = max{β1H̄
2
t + β2H̄t + β3, γ1

¯̄H2
t + γ2

¯̄Ht + γ3}/K, Ut = min{δ1 ˜̃Ht + δ2, σ1
˜̄H2
t +

σ2
˜̄Ht + σ3}/K.

The hyperparameters of GPs in the compressor case study are modelled as follows,

• TVSAFEOPT: The reward function and the safety functions are modeled by independent
GPs with zero mean and spatio-temporal kernel κ((x, t), (x′, t′)) = exp

(
−∥x−x′∥2

2

2σ2
1

)
·

exp
(
−( t−t′)2

2σ2
2

)
, where σ1 ≡ 1.0, σ2 = 80.0 for f and c1 - c6, and σ2 = 70.0 for c7.

• SAFEOPT: The reward function and the safety functions are modeled by independent GPs
with zero mean and 3d Gaussian kernel κ(x,x′) = exp

(
−∥x−x′∥2

2

2σ2
3

)
, where σ3 ≡ 1.0.

As for approximate optimization, the r.h.s. of (16) - (17) are linearly approximated as follows:

• Surge line: β1H̄
2
t + β2H̄t + β3 ≈ 4.481e− 4 ·Ht + 59.76

• Min. speed line: γ1 ¯̄H2
t + γ2

¯̄Ht + γ3 ≈ −1.333e− 3 ·Ht + 193.3

• Choke line: δ1
˜̃Ht + δ2 ≈ 1.611e− 3 ·Ht + 46.77

• Max. speed line: σ1
˜̄H2
t + σ2

˜̄Ht + σ3 ≈ −1.667e− 3 ·Ht + 461.7

17



B Proof of Safety Guarantee

Note all following lemmas hold for any δ ∈ (0, 1), and S0, such that ∅ ⊊ S0 ⊆ X .

First, we want to show that the intersected confidence interval Ck in (4) w.h.p. contains the reward
function and safety functions h(x, t, i) as in (2).

Lemma B.1. Let
√
βk = B+ σ

√
2
(
γh
k·|I| + 1 + ln(1/δ)

)
, with γh

k defined as in (12) and Ck(x, i)

defined as in (4), then the following holds with probability at least 1− δ :

h(x, t, i) ∈ Ck(x, i) ∀t ≥ 0,∀i ∈ I,∀x ∈ X ,

Proof by induction.
If t = 0, by Assumption 2.3 and the definition of Ck in (4), then h(x, 0, i) ∈ C0(x, i), for all i ∈ I
and for all x ∈ X .
Suppose, for any t = τ ≥ 0, that h(x, τ, i) ∈ Cτ (x, i), then for t = τ + 1, from the Lipschitz
continuity of h, |h(x, τ + 1, i) − h(x, τ, i)| ≤ L(τ), it holds that h(x, τ + 1, i) ∈ Cτ (x, i) ⊕
[−L(τ), L(τ)].
Moreover, by Lemma 2.4 and (3) we have that h(x, τ + 1, i) ∈ Qτ+1(x, i).

Thus, h(x, τ + 1, i) ∈ (Cτ (x, i)⊕ [−L(τ), L(τ)]) ∩Qτ+1(x, i) = Cτ+1(x, i), ∀i ∈ I, ∀x ∈ X .
Therefore, for all t ≥ 0, for all i ∈ I and for all x ∈ X we have that h(x, t, i) ∈ Ck(x, i), and this
concludes the proof.

We are now ready to prove Theorem 2.5 that provides a sufficient condition for TVSAFEOPT to
ensure safety embedded in the constraints ci(x, t) ≥ 0, for all i ∈ Ic.

Proof of Theorem 2.5.
If t = 0, by definition of S0, one has ci(x, t) = ci(x, 0) ≥ L(0) ≥ 0, ∀i ∈ Ic, ∀x ∈ S0.

For any t ≥ 1, ∀x ∈ St, by recursive definition of Sk in (6), ∀i ∈ Ic, there exists x′ ∈ St−1,
s.t. lk(x

′, i)− Lxd(x,x
′)− L(t) ≥ 0. Then, ∀i ∈ Ic

ci(x, t)

≥ci(x′, t)− Lxd(x,x
′) by Lipschitz continuity with x

≥lk(x′, i)− Lxd(x,x
′) by Lemma B.1

≥lk(x′, i)− Lxd(x,x
′)− L(t)

≥0

and this concludes the proof.
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C Proof of Near-Optimality Guarantee

The proof of near optimality consists in two parts: i) bounding the uncertainty and ii) bounding the
expansion of the safe set.

C.1 Bounding the Uncertainty

We first derive a decaying upper bound of uncertainty for TVSAFEOPT. In this way we can ensure
the uncertainty of the reward function and safety functions to drop below a desired threshold.
Lemma C.1. Define b1 := 8/ log

(
1 + σ−2

)
∈ R, and γh

k as in (12). For any k > k0 ≥ 1, there
exists k′ ∈ (k0, k], such that the following holds for all i ∈ I:

wk′(xk′ , i) ≤

√
b1βkγh

k

k − k0
,

Proof.
Let iτ := argmax

i∈I
wτ (xτ , i), where xτ = argmax

x∈Gτ∪Mτ

max
i∈I

wτ (x, i). For all i ∈ I, k0 < k, there

exists k′ ∈ (k0, k]:

wk′(xk′ , i)

≤ 1

k − k0

k∑
τ=k0+1

wτ (xτ , iτ )

(a)

≤ 2

k − k0

k∑
τ=k0+1

√
βτστ−1(xτ , iτ )

≤ 2
√
βk

k − k0

k∑
τ=k0+1

στ−1(xτ , iτ )

(b)

≤

√√√√ 4βk

k − k0

k∑
τ=k0+1

σ2
τ−1(xτ , iτ )

(c)

≤

√√√√ b1βk

k − k0

1

2

k∑
τ=k0+1

log(1 + σ−2σ2
τ−1(xτ , iτ ))

(d)

≤

√√√√ b1βk

k − k0

1

2

k∑
τ=k0+1

log(1 + σ−2σ′2
τ−1(xτ , iτ ))

(e)
=

√
b1βkI(ĥXk

;h)

k − k0

(f)

≤

√
b1βkγh

k

k − k0

(a): Definition of wk in (5),

(b): From the fact that the quadratic mean upper bounds the arithmetic mean,

(c): σ2
τ−1(xτ , iτ ) ≤ k ((xτ , τ, iτ ), (xτ , τ, iτ )) ≤ 1 by Assumption 2.1, and the fact that a ≤

b1
8 log(1 + σ−2a), ∀a ∈ [0, 1],

(d): σ′
τ−1(x, i) denotes the posterior standard deviation of h(x, τ, i) inferred by observations

at Xτ := {(xj , j, ij)}j<τ . Since {(xj , j, ij)}j=<τ ⊊ {(xj , j)}j<τ × I, then στ−1(xτ , iτ ) ≤
σ′
τ−1(xτ , iτ ),
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(e): From [19, Lemma 5.3],

(f): Definition of γh
k (12).

Corollary C.2. Given b1 := 8/ log
(
1 + σ−2

)
∈ R, take Tk as the smallest positive integer satisfying

Tk

βk+Tk
γh
k+Tk

≥ b1
ϵ2 . Then, there exists k′ ∈ (k, k + Tk], such that for any x ∈ Gk′ ∪Mk′ , and for all

i ∈ I it holds that
wk′(x, i) ≤ ϵ.

C.2 Bounding the Expansion of the Safe Set

All following lemmas hold for any δ ∈ (0, 1), ϵ > 0 and S0, such that ∅ ⊊ S0 ⊆ X .

To facilitate the theoretical analysis, we define ∀x ∈ X ,∀i ∈ I:{
l̃k(x, i) := max{l̃k−1(x, i), µk−1(x, i)− β

1/2
k σk−1(x, i)}, k ≥ 1

l̃0(x, i) := l0(x, i)
(19)

Remember that, from (4), we can derive ∀x ∈ X ,∀i ∈ I:

lk(x, i) = max{lk−1(x, i)− L(t− 1), µk−1(x, i)− β
1/2
k σk−1(x, i)} (20)

Therefore, l̃k can be viewed as updating lk with L(t) ≡ 0. With a slight abuse of notation, we omit
arguments x and i when not ambiguous.
Lemma C.3. The following holds for any k ≥ 1,∀x ∈ X ,∀i ∈ I:

(i) lk(x, i) ≥ lk−1(x, i)− L(t− 1)

(ii) l̃k(x, i) ≥ l̃k−1(x, i)

(iii) lk(x, i) ≤ l̃k(x, i)

(iv) l̃k(x, i)− L̄t ≤ lk(x, i)

Proof.

(i) Direct consequence of (20).

(ii) Direct consequence of (19).

(iii) We proceed by induction. Suppose lτ ≤ l̃τ , then lτ − L(τ) ≤ l̃τ , thus according to (20),
lτ+1 = max{lτ −L(τ), µτ − β

1/2
τ+1στ} ≤ max{l̃τ , µτ − β

1/2
τ+1στ} = l̃τ+1, from which it

follows lk(x, i) ≤ l̃k(x, i).

(iv) We proceed by induction. Suppose lτ ≥ l̃τ −
τ−1∑
k=0

L(k).

If µτ − β
1/2
τ+1στ > l̃τ , then lτ+1

(20)
= µτ − β

1/2
τ+1στ

(19)
= l̃τ+1 ≥ l̃τ+1 −

τ∑
k=0

L(k).

If µτ − β
1/2
τ+1στ < lτ − L(τ), then lτ+1

(20)
= lτ − L(τ) ≥ l̃τ −

τ−1∑
k=0

L(k) − L(τ) =

l̃τ+1 −
τ∑

k=0

L(k).

Otherwise, lτ+1
(20)
= µτ −β

1/2
τ+1στ ≥ lτ −L(τ) ≥ l̃τ −

τ−1∑
k=0

L(k)−L(τ) = l̃τ+1−
τ∑

k=0

L(k).
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To summarize, lk ≥ l̃k −
t−1∑
k=0

L(k) ≥ l̃k − L̄t

Lemma C.3 allows us to define auxiliary safe sets based on l̃k such that they are contained in Sk.
Furthermore, due to the monotonicity of l̃k, we can prove the auxiliary safe sets never shrink, which
will play a fundamental role in studying their convergence property and provide near-optimality
guarantee of TVSAFEOPT.

Based on (19), we further define:

Sk := {x ∈ X | ∀i ∈ Ic,∃x′
i ∈ St−1, s.t. l̃k(x

′
i, i)− Lxd(x,x

′
i) ≥ 0}

Sk := {x ∈ X | ∀i ∈ Ic,∃x′
i ∈ St−1, s.t. l̃k(x

′
i, i)− Lxd(x,x

′
i)− L̄t ≥ 0}

S0 = S0 = S0

Remember Sk = {x ∈ X | ∀i ∈ Ic,∃x′
i ∈ St−1, s.t. lk(x

′
i, i) − Lxd(x,x

′
i) − L(t) ≥ 0}. Thus,

Sk = Sk = Sk if and only if L(t) ≡ 0.

The following lemma proves that Sk never shrinks, and that Sk and Sk are a subset and a superset
for Sk, respectively.
Lemma C.4. The following holds for any t ≥ 1:

(i) St−1 ⊆ Sk

(ii) Sk ⊆ Sk ⊆ Sk

Proof.

(i) We refer the reader to [8, Lemma 7.1].

(ii) We proceed by induction. Suppose Sτ ⊆ Sτ ⊆ Sτ .

For all x ∈ Sτ+1, and for all i ∈ Ic, there exists x′
i ∈ Sτ ⊆ Sτ , s.t. l̃τ (x′

i, i)−Lxd(x,x
′
i) ≥

lτ (x
′
i, i)− Lxd(x,x

′
i)− L(τ) ≥ 0, hence x ∈ Sτ+1 as well. Therefore, Sτ ⊆ Sτ ∀τ .

For all x ∈ Sτ+1, and for all i ∈ Ic, there exists x′
i ∈ Sτ ⊆ Sτ , s.t. lτ (x′

i, i)−Lxd(x,x
′
i)−

L(τ) ≥ l̃τ (x
′
i, i)−

τ−1∑
k=0

L(k)−Lxd(x,x
′
i)−L(τ) = l̃τ (x

′
i, i)−Lxd(x,x

′
i)−

τ∑
k=0

L(k) ≥

l̃τ (x
′
i, i)−Lxd(x,x

′
i)− L̄t ≥ 0, thus x ∈ Sτ+1. Therefore, Sτ ⊆ Sτ , ∀τ . From which we

conclude Sτ ⊆ Sτ ⊆ Sτ , ∀τ .

Note: Where needed in the following lemmas, we assume b1 and Tk are defined as in Lemma C.1
and Corollary C.2
Lemma C.5 (Lemma 7.4 in [8]). For any k ≥ 1, a > 0, if R̄a (S0) \Sk ̸= ∅, then Ra (Sk) \Sk ̸= ∅.

The following lemma provides a sufficient condition for the expansion of the auxiliary safe set Sk.
Lemma C.6. For any t ≥ 1, if R̄L̄t+ϵ(S0)\Sk ̸= ∅, then, with probability at least 1− δ, it holds
that Sk+Tk

⊋ Sk.

Proof.
Similar to the proof of [8, Lemma 7.5].

By Lemma C.5, we get that, RL̄t+ϵ (Sk) \Sk ̸= ∅. Equivalently, ∃x ∈ RL̄t+ϵ (Sk) \Sk which
implies that, for all i ∈ Ic,

∃zi ∈ Sk : c̄i(zi)− Lxd(zi,x)− L̄t − ϵ ≥ 0
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Now assume, to the contrary, that Sk+Tk
= Sk. Thus, ∀k′ ∈ (k, k + Tk], x ∈ D\Sk′ , and ∀i ∈ Ic,

zi ∈ Sk′ .

uk′(zi, i)− Lxd(zi,x)− L(k′)

≥c̄i(zi)− Lxd(zi,x)− L(k′) by Lemma B.1

≥c̄i(zi)− Lxd(zi,x)− L̄t − ϵ

≥0
Therefore, by definition (8), ek′(zi) > 0, which implies zi ∈ Gk′ , ∀k′ ∈ (k, k + Tk], ∀i ∈ Ic.

Therefore, we know that there exists k′ ∈ (k, k + Tk], for all i ∈ Ic, wk′(zi, i) ≤ ϵ. (Corollary C.2)
Hence, for all i ∈ Ic,

l̃k′(zi, i)− Lxd(zi,x)

≥c̄i(zi)− wk′(zi, i)− Lxd(zi,x) by Lemma B.1
≥c̄i(zi)− ϵ− Lxd(zi,x)

≥L̄t

This means x ∈ Sk′ = Sk, which leads to a contradiction.

The following lemma gives a superset for the auxiliary safe set Sk.
Lemma C.7. Sk ⊆ R̄L̄t

(S0) with probability at least 1− δ.

Proof by induction.
S0 = S0 ⊆ R̄L̄t

(S0)

Suppose Sτ ⊆ R̄L̄t
(S0).

For all x ∈ Sτ+1 and for all i ∈ Ic there exists x′
i ∈ Sτ , s.t. c̄i (x

′
i) − Lxd(x,x

′
i) − L̄t

(a)

≥
l̃k(x

′
i, i)− Lxd(x,x

′
i)− L̄t ≥ 0.

(a): Lemma B.1.

Thus, Sτ+1 ⊆ RL̄t
(Sτ ) ⊆ R̄L̄t

(S0)

Lemma C.8 (Lemma 7.8 in [8]). Let k∗ be the smallest integer, such that k∗ ≥
∣∣R̄L̄t

(S0)
∣∣Tk∗ .

Then, there exists k0 ≤ k∗, such that Sk0+Tk0
= Sk0

.

Lemma C.8 together with Lemma C.6, and Lemma C.7 entail convergence of Sk within k∗ time
steps, which ultimately leads us to the near-optimality of TVSAFEOPT when the problem becomes
stationary.
Lemma C.9. For any k ≥ 1, if Sk+Tk

= Sk, then, with probability at least 1 − δ, there exists
k′ ∈ (k, k + Tk] such that

f̄ (x̂k′) ≥ max
x∈R̄L̄t+ϵ(S0)

f̄(x)− ϵ.

Proof.

Let x∗
k′ := argmax

x∈Sk′

f̄(x). Note that x∗
k′ ∈Mk′ , since

uk′(x∗
k′ , 0)

(a)

≥ f̄(x∗
k′)

≥ f̄(x̂k′)

(b)

≥ lk′(x̂k′ , 0)

(c)

≥ max
x∈Sk′

lk′(x, 0)
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(a) and (b): Lemma B.1,

(c): Definition of x̂k (11).

We will first show that ∃k′ ∈ (k, k + Tk], s.t. f̄(x̂k′) ≥ f̄(x∗
k′)− ϵ. Assume, to the contrary, that

∀k′ ∈ (k, k + Tk], f̄(x̂k′) < f̄(x∗
k′)− ϵ

Then, we have, ∃k′ ∈ (k, k + Tk]

lt′(x
∗
k′ , 0)

(d)

≤ lk′(x̂k′ , 0)

(e)

≤ f̄(x̂k′)

<f̄(x∗
k′)− ϵ

(f)

≤ lk′(x∗
k′ , 0),

which is a contradiction.

(d): Definition of x̂k (11),

(e): Lemma B.1,

(f): Corollary C.2, and x∗
k′ ∈Mk′

Finally, R̄L̄t+ϵ (S0) ⊆ Sk′ ⊆ Sk′ , by Lemma C.6 and Lemma C.4 (ii). Therefore, ∃ k′ ∈ (k, k+ Tk]
such that

max
x∈R̄L̄t+ϵ(S0)

f̄(x)− ϵ ≤ max
x∈Sk′

f̄(x)− ϵ

= f̄(x∗
k′)− ϵ

≤ f̄(x̂k′)

C.3 Near-Optimality Proof

Proof of Theorem 2.6. Theorem 2.6 is a direct consequence of Corollary C.2, Lemma C.8, and
Lemma C.9.

D Practical Considerations

D.1 Trade-off between Safety and Optimality

In this work, we focus on safety critical systems where satisfying the safety constraints has highest
priority over finding the optima. Through pessimistically considering change with time in the decision-
making process, TVSAFEOPT emphasizes safety in non-stationary conditions at the inevitable expense
of optimality. In practice, such sacrifice on optimality can be alleviated by tighter bound of rate of
change.

Besides, in the case where safety can be to some extent comprised, which is beyond the focus of this
work, constrained BO and its time-varying extension would be a more suitable method to apply. We
refer the readers to [50, 51] for further information.

D.2 Scalability

Explicit considering time can be viewed roughly as adding dimension by 1, Therefore, TVSAFEOPT
achieves time adaptation without adding much computational cost. With the increase in dimensionality
of the problem, safety constraints might arise across multiple dimensions, from multiple directions at
the price of optimality. As our approach is suitable for safety critical conditions, the focus is put on
maintaining safety under change, therefore safety considerations “dictate” the optima. Additionally,
in practice, the safety functions are modeled independently with a GP, and thus the computational
cost scales linearly with the number of constraints.
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper uses neither external datasets nor human subjects, and no data
have been collected for the paper. The algorithm proposed in the paper is an optimization
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The necessary licences for fair use have been provided in Appendix A.3.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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societal impacts of the work performed?

Answer: [Yes]
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• The answer NA means that there is no societal impact of the work performed.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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models that generate Deepfakes faster.
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11. Safeguards
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce additional assets.
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• The answer NA means that the paper does not release new assets.
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submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper uses neither crowdsourcing nor human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not use human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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