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• Solve
max
x

𝑓 𝑥, 𝑡

s. t. 𝑐𝑖 𝑥, 𝑡 ≥ 0, 𝑖 = 1,… ,𝑚

where the reward function and the constraints

• are unknown and can only be sampled,

• change with time

Challenges: 

• Ensuring safety with time-varying constraints

• Finding safe optimum of time-varying objective
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TVSafeOPT – safe exploration

1. Provide tight confidence intervals 𝐶𝑘 𝑥, 𝑖 for the objective and constraints based on how fast they 

change, using the Lipschitz constant 𝐿
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TVSafeOPT – safe exploration

1. Provide tight confidence intervals 𝐶𝑘 𝑥, 𝑖 for the objective and constraints based on how fast they 

change, using the Lipschitz constant 𝐿

2. Use the lower and the upper bounds of 𝐶𝑘 𝑥, 𝑖 to update the safe set 𝑆𝑘 considering how fast the

constraints 𝑖 change with both time and decisions.
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constraints 𝑖 change with both time and decisions.

3. Extend safe exploration from SafeOPT to account for time-varying settings and pick the most 

uncertain decision using the tight confidence interval 𝐶𝑘 𝑥, 𝑖
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TVSafeOPT – safe exploration

1. Provide tight confidence intervals 𝐶𝑘 𝑥, 𝑖 for the objective and constraints based on how fast they 

change, using the Lipschitz constant 𝐿

2. Use the lower and the upper bounds of 𝐶𝑘 𝑥, 𝑖 to update the safe set 𝑆𝑘 considering how fast the

constraints 𝑖 change with both time and decisions.

3. Extend safe exploration from SafeOPT to account for time-varying settings and pick the most 

uncertain decision using the tight confidence interval 𝐶𝑘 𝑥, 𝑖

• Theorem (informal):

For any 𝛿 ∈ (0,1), every constraint  𝑐𝑖 𝑥, 𝑡 ≥ 0 ,𝑖 = 1, … ,𝑚, holds at every time step 𝑡 ≥ 0 for all 𝑥 ∈ 𝑆𝑘

with probability at least 1 − 𝛿 , if 𝛽𝑘 = 𝐵 + 𝜎 2(𝛾𝑘𝑚
ℎ + 1 + ln1/𝛿) where 𝛾𝑘𝑚

ℎ depends on maximal 

mutual information obtained from GPs and the objective and constraints belong to RHKS with bound 𝐵.
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TVSafeOPT – safe exploration

• Comparison of safe sets computed by TVSafeOPT, 

ETSafeOPT, and SafeOPT at t=30, t=100, t=170
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TVSafeOPT – safe exploitation

• Focus on ensuring optimality when the system 

becomes stationary:

max
𝑥

𝑓 𝑥, 𝑡

s. t. 𝑐𝑖 𝑥, 𝑡 ≥ 0

max
𝑥

𝑓 𝑥

s. t. 𝑐𝑖(𝑥) ≥ 0
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• Focus on ensuring optimality when the system 

becomes stationary:

max
𝑥

𝑓 𝑥, 𝑡

s. t. 𝑐𝑖 𝑥, 𝑡 ≥ 0

max
𝑥

𝑓 𝑥

s. t. 𝑐𝑖(𝑥) ≥ 0

• Theorem (informal):

For any 𝛿 ∈ (0,1), the value of the stationary reward 

𝑓(𝑥𝑘∗) will be within 𝜖 from the true optimum 𝑓∗ in the 

reachable set in at most 𝑘∗ steps:

𝑓 𝑥𝑘∗ − 𝑓∗ ≤ 𝜖

where 𝑘∗depends on the choice of 𝛽, maximal mutual 

information from the GPs, measurement noise, the 

initial safe seed 𝑆0, and 𝜖, and the reachable set is a 
subset of the largest possible set expanded from 𝑆0
with the margin depending on 𝐿 𝑡 and 𝜖. 
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Comparison of reward 

functions from 

different methods with 

different initial safe 

sets, averaged over 5 

runs

Optimal

SafeOPT

TVSafeOPT

ETSafeOPT

Time steps0 200

-10

4

0

ETSafeOPT TVSafeOPT

Violations -84.4%±1.7% -99.99%±0.01%

Coverage 

ratio

-30.9%±2.9% -21.0%±1.3%

Cumulative 

regret

-73.6%±14.7% -66.9%±14.4%

Comparison of TVSafeOPT and ETSafeOPT with respect to SafeOPT, 

showing the average and the standard deviation results from five runs 

with random initial safe sets



Impact

• TVSafeOPT:

• extends SAFEOPT to handle time-varying 

optimization problems
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Impact

• TVSafeOPT:

• extends SAFEOPT to handle time-varying 

optimization problems

• adapts to changes in time and maintains

fewer unsafe decisions in its safe sets for 

time-varying problems than existing 
algorithms
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Impact

• TVSafeOPT:

• extends SAFEOPT to handle time-varying 

optimization problems

• adapts to changes in time and maintains

fewer unsafe decisions in its safe sets for 

time-varying problems than existing 
algorithms

• is capable of safely transferring safety of 

the decisions into the future and will find the 

near-optimal decision when the reward 
function stops changing
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